Kernel Methods and Hybrid Evolutionary Algorithms in Energy Forecasting - Wei-Chiang Hong - Książki - Mdpi AG - 9783038972921 - 18 października 2018
W przypadku, gdy okładka i tytuł się nie zgadzają, tytuł jest poprawny

Kernel Methods and Hybrid Evolutionary Algorithms in Energy Forecasting

Cena
zł 186,90

Zamówione z odległego magazynu

Przewidywana dostawa 14 - 23 sty 2026
Świąteczne prezenty można zwracać do 31 stycznia
Dodaj do swojej listy życzeń iMusic

The development of kernel methods and hybrid evolutionary algorithms (HEAs) to support experts in energy forecasting is of great importance to improving the accuracy of the actions derived from an energy decision maker, and it is crucial that they are theoretically sound. In addition, more accurate or more precise energy demand forecasts are required when decisions are made in a competitive environment. Therefore, this is of special relevance in the Big Data era. These forecasts are usually based on a complex function combination. These models have resulted in over-reliance on the use of informal judgment and higher expense if lacking the ability to catch the data patterns. The novel applications of kernel methods and hybrid evolutionary algorithms can provide more satisfactory parameters in forecasting models.

We aimed to attract researchers with an interest in the research areas described above. Specifically, we were interested in contributions towards the development of HEAs with kernel methods or with other novel methods (e.g., chaotic mapping mechanism, fuzzy theory, and quantum computing mechanism), which, with superior capabilities over the traditional optimization approaches, aim to overcome some embedded drawbacks and then apply these new HEAs to be hybridized with original forecasting models to significantly improve forecasting accuracy.


186 pages, 154 Illustrations

Media Książki     Paperback Book   (Książka z miękką okładką i klejonym grzbietem)
Wydane 18 października 2018
ISBN13 9783038972921
Wydawcy Mdpi AG
Strony 186
Wymiary 170 × 244 × 13 mm   ·   408 g
Język Angielski  

Więcej od Wei-Chiang Hong

Pokaż wszystko