Banach Space Complexes - Mathematics and Its Applications - Calin-grigore Ambrozie - Książki - Springer - 9789401041683 - 22 listopada 2012
W przypadku, gdy okładka i tytuł się nie zgadzają, tytuł jest poprawny

Banach Space Complexes - Mathematics and Its Applications Softcover Reprint of the Original 1st Ed. 1995 edition

Cena
zł 212,90

Zamówione z odległego magazynu

Przewidywana dostawa 1 - 9 sty 2026
Świąteczne prezenty można zwracać do 31 stycznia
Dodaj do swojej listy życzeń iMusic

Również dostępne jako:

The aim of this work is to initiate a systematic study of those properties of Banach space complexes that are stable under certain perturbations. A Banach space complex is essentially an object of the form 1 op-l oP +1 ... --+ XP- --+ XP --+ XP --+ ... , where p runs a finite or infiniteinterval ofintegers, XP are Banach spaces, and oP : Xp ..... Xp+1 are continuous linear operators such that OPOp-1 = 0 for all indices p. In particular, every continuous linear operator S : X ..... Y, where X, Yare Banach spaces, may be regarded as a complex: O ..... X ~ Y ..... O. The already existing Fredholm theory for linear operators suggested the possibility to extend its concepts and methods to the study of Banach space complexes. The basic stability properties valid for (semi-) Fredholm operators have their counterparts in the more general context of Banach space complexes. We have in mind especially the stability of the index (i.e., the extended Euler characteristic) under small or compact perturbations, but other related stability results can also be successfully extended. Banach (or Hilbert) space complexes have penetrated the functional analysis from at least two apparently disjoint directions. A first direction is related to the multivariable spectral theory in the sense of J. L.


213 pages, biography

Media Książki     Paperback Book   (Książka z miękką okładką i klejonym grzbietem)
Wydane 22 listopada 2012
ISBN13 9789401041683
Wydawcy Springer
Strony 213
Wymiary 160 × 240 × 12 mm   ·   317 g
Język Angielski