Genetic Relational Search for Inductive Concept Learning: a Memetic Algorithm for Ilp - Federico Divina - Książki - LAP LAMBERT Academic Publishing - 9783843355483 - 16 września 2010
W przypadku, gdy okładka i tytuł się nie zgadzają, tytuł jest poprawny

Genetic Relational Search for Inductive Concept Learning: a Memetic Algorithm for Ilp

Cena
zł 242,90

Zamówione z odległego magazynu

Przewidywana dostawa 8 - 16 sty 2026
Świąteczne prezenty można zwracać do 31 stycznia
Dodaj do swojej listy życzeń iMusic

Learning from examples in First Order Logic, also known as Inductive Logic Programming (ILP), constitutes a central topic in Machine Learning, with relevant applications to problems in complex domains, e.g., natural language and computational biology. Learning can be viewed as a search problem in the space of all possible hypotheses. Given a background knowledge, a set of positive examples and a set of negative examples, expressed in First Order Logic, one has to find a hypothesis which covers all positive examples and none of the negative ones. This problem is NP-hard even if the language to represent hypotheses is propositional logic. When FOL hypotheses are used, this complexity is combined with the complexity of evaluating hypotheses. This book describes an evolutionary algorithm for ILP. The algorithm, called ECL (for Evolutionary Concept Learner), evolves a population of Horn clauses by repeated selection, mutation and optimization of more fit clauses. ECL relies on four greedy mutation operators for searching the hypothesis space, and employs an optimization phase that follows each mutation. Experimental results show that ECL works well in practice.

Media Książki     Paperback Book   (Książka z miękką okładką i klejonym grzbietem)
Wydane 16 września 2010
ISBN13 9783843355483
Wydawcy LAP LAMBERT Academic Publishing
Strony 192
Wymiary 226 × 11 × 150 mm   ·   304 g
Język Niemiecki  

Więcej od Federico Divina

Pokaż wszystko