Robust Lossy Source Coding for Correlated Fading Channels: Exploiting Channel Memory and Soft-decision Information Using Noise Resilient Vector Quantizer and Map-detection - Shervin Shahidi - Książki - LAP LAMBERT Academic Publishing - 9783659192005 - 9 sierpnia 2012
W przypadku, gdy okładka i tytuł się nie zgadzają, tytuł jest poprawny

Robust Lossy Source Coding for Correlated Fading Channels: Exploiting Channel Memory and Soft-decision Information Using Noise Resilient Vector Quantizer and Map-detection

Cena
zł 212,90

Zamówione z odległego magazynu

Przewidywana dostawa 8 - 16 sty 2026
Świąteczne prezenty można zwracać do 31 stycznia
Dodaj do swojej listy życzeń iMusic

The joint source-channel coding problem for soft-decision demodulated time-correlated fading channels is investigated without the use channel coding and interleaving. Two robust lossy source coding schemes with low-encoding delay are next proposed for the NBNDC-QB. The first scheme consists of a scalar quantizer, a proper index assignment, and a sequence MAP decoder designed to harness the redundancy left in the quantizer?s indices, the channel?s soft-decision output and noise correlation. The second scheme is the classical noise resilient vector quantizer known as the channel optimized vector quantizer. It is demonstrated that both systems can successfully exploit the channel?s memory and soft-decision information. For the purpose of system design, the recently introduced non-binary noise discrete channel with queue based noise (NBNDC-QB) is adopted. Optimal sequence maximum a posteriori (MAP) detection of a discrete Markov source sent over the NBNDC-QB is first studied. When the Markov source is binary and symmetric, a necessary and sufficient condition under which the MAP decoder is reduced to a simple instantaneous symbol-by-symbol decoder is established.

Media Książki     Paperback Book   (Książka z miękką okładką i klejonym grzbietem)
Wydane 9 sierpnia 2012
ISBN13 9783659192005
Wydawcy LAP LAMBERT Academic Publishing
Strony 124
Wymiary 150 × 7 × 226 mm   ·   203 g
Język Niemiecki