Sparse Representation of High Dimensional Data for Classification: Research and Experiments - Salman Siddiqui - Książki - VDM Verlag Dr. Müller - 9783639132991 - 5 marca 2009
W przypadku, gdy okładka i tytuł się nie zgadzają, tytuł jest poprawny

Sparse Representation of High Dimensional Data for Classification: Research and Experiments

Cena
zł 217,90

Zamówione z odległego magazynu

Przewidywana dostawa 14 - 23 sty 2026
Świąteczne prezenty można zwracać do 31 stycznia
Dodaj do swojej listy życzeń iMusic

In this book you will find the use of sparse Principal Component Analysis (PCA) for representing high dimensional data for classification. Sparse transformation reduces the data volume/dimensionality without loss of critical information, so that it can be processed efficiently and assimilated by a human. We obtained sparse representation of high dimensional dataset using Sparse Principal Component Analysis (SPCA) and Direct formulation of Sparse Principal Component Analysis (DSPCA). Later we performed classification using k Nearest Neighbor (kNN) Method and compared its result with regular PCA. The experiments were performed on hyperspectral data and various datasets obtained from University of California, Irvine (UCI) machine learning dataset repository. The results suggest that sparse data representation is desirable because sparse representation enhances interpretation. It also improves classification performance with certain number of features and in most of the cases classification performance is similar to regular PCA.

Media Książki     Paperback Book   (Książka z miękką okładką i klejonym grzbietem)
Wydane 5 marca 2009
ISBN13 9783639132991
Wydawcy VDM Verlag Dr. Müller
Strony 64
Wymiary 150 × 220 × 10 mm   ·   104 g
Język Angielski